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Rapid Note

Cooperative diffusion in weakly charged polyelectrolyte gels
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Abstract. A general expression for the cooperative diffusion constant of weakly charged gels is derived as a
function of the thermodynamic parameters such as polyelectrolyte concentration, salt concentration, ionic
strength, and the degree of crosslinking. In the low concentration range it decreases with the monomer
concentration.

PACS. 82.70.Gg Gels and sols – 36.20.-r Macromolecules and polymer molecules – 05.60.+w Transport
processes: theory

For weakly charged chains, the ionizable groups are
well separated on the chain and, contrary to the highly
charged case (with counter-ion condensation), a small
variation of the ionization degree modifies strongly the
properties of the system [1]. At the same time, the in-
troduction of crosslinking results in a large effect in the
diverse physical properties [2]. As a consequence, the ad-
ditional effects induced by the presence of crosslinks in the
gels should be taken into account in the study of weakly
charged polyelectrolyte gels.

Quite recently this difficult problem of weakly charged
polymer gels has received a renewed theoretical atten-
tion [3,4]. Since the static aspects of the scattering ex-
periment are reasonably consistent with the theoretical
predictions, we can now attempt to understand the dy-
namical properties of charged gels. In this paper, the co-
operative diffusion constant is calculated.

We assume that the light scattering from gels can be
written as the sum of contributions from (thermal) con-
centration fluctuations of the network and contributions
from frozen-in (static) inhomogeneities. Only the former
is assumed to be relevant in treating the dynamics, and
we define the cooperative diffusion coefficient Dc with the
dynamic component of the normalized intermediate scat-
tering function fN (q, t) by

lim
q→0

fN (q, t) = exp(−q2Dct). (1)

Thus the effect of crosslink fluctuations on the relaxation
of thermal concentration fluctuations is not taken into
consideration, while the statistical information about elas-
ticity of the deformed networks due to the crosslink is
contained in our result.

a e-mail: shiway@hiei.kit.ac.jp

The cooperative diffusion coefficient can be written
as [5]

Dc = sDM/ρ0. (2)

Here sD is the sedimentation coefficient per monomer unit
of the network, andM is the longitudinal osmotic modulus
given by

M = ρ0
∂Π

∂ρ0
, (3)

where Π is the osmotic pressure and ρ0 is the monomer
number density. The sedimentation coefficient is related
to the density correlation function S(r) through [6,7]

sD =
1

ζ0

[
1 +

ζ0

3ηs
Tr

∫
drT (r)S(r)

]
, (4)

where ζ0 is the (bare) segment friction coefficient between
the polymer network and the solvent, ηs being the solvent
viscosity. The Oseen tensor η−1

s T (r) represents hydrody-
namic interations between monomers and is defined by

T (r) =

∫
q

(I − qq/q2)q−2 exp(−iq · r),

with
∫
q

= (2π)−3
∫
d3q, I being the unit tensor. In the

formula (4) the hydrodynamic screening effect is simply
ignored as a first approximation. It follows that

sD =
1

ζ0

[
1 +

ζ0

3π2ηs

∫ ∞
0

dkSF (k)
]
, (5)

where SF (k) is the Fourier transform of S(r). At this junc-
ture we argue that as long as we consider the semidilute
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region (in which polymer volume fraction φ� 1), we may
neglect the first term in the square brackets in equation (5)
as compared with the second term. This is because, as we
can see shortly below, it turns out that the second term
behaves as φ−2 for φ � 1 in accord with the scaling the-
ory [5].

The structure factor SF (q) of the thermal fluctuations
of concentration for the weakly charged gels in a Θ or poor
solvent was calculated in reference [4] at the level of the
Debye-Hückel theory1. It is given by the expression

SF (q) =
(r0
a

)2
(
x2 + tg +

1

x2 + s

)−1

. (6)

Here a is the length of the monomer unit, and r0 is a
characteristic length scale in a (saltless) polyelectrolyte

solution and is given by (a/r0)2 = f

√
12φl̂B; f is the

fraction of charged monomers (i.e., the degree of ion-

ization), and l̂B is the reduced Bjerrum length given by

l̂B = e2/(aεskBT ) where e is the elementary charge, εs the
dielectric constant of the solvent, kBT being the thermal
energy. The reduced wavevector x is defined by x = r0q,
and s is a reduced ionic strength defined by s = r2

0κ
2

where κ−1 is the usual Debye-Hückel screening length:
κ2 = a−2 l̂B(fφ+ 2φs), φs being the salt volume fraction.
Similarly, tg is the reduced temperature variable of the gel
given by

tg = 6
(r0
a

)2
[

2φ(1− 2χ+ φ) +
1

N

(
B +

(
φ0

φ

)2/3
)]

.

(7)

The first term in the square brackets on the rhs of equa-
tion (7) is the usual virial terms of polymer solutions (and
thus χ being the Flory interaction parameter), and the
second term represents the elastic contributions of the de-
formed gels; N is the average number of chain monomers
between neighboring crosslinks, φ0 the polymer volume
fraction at the relaxed state, B being a positive constant.

In passing we may remark that in charged gels two
types of phase separations are possible as a result of the
interplay between elastic and electrostatic effects. On the
one hand the scattering intensity SF (q = 0) diverges on
the boundary where 1+stg = 0 (at which the longitudinal
modulus vanishes). The gel then becomes unstable against
a macroscopic separation (bulk spinodal phase separa-
tion). On the other hand, when the condition tg = s−2 is
satisfied, the divergence takes place at a finite q = q∗. This
corresponds to a microphase separation with a domain pe-

riodicity 2π/q∗, q∗ being given by q∗ =
√
r−2
0 − κ2.

1 Use of this rough approximation might be questioned on
the grounds that a supposedly more rigorous expression of SF
is presented in reference [3]. However, as described in detail in
reference [4], there is some disagreement between these theories
about the qualitative features of the structure factor. Thus in
this paper we shall use equation (6) since it enables one to
carry through the calculation analytically giving a qualitative
behavior of Dc in agreement with experiment.

Combining equations (2, 3, 5, 6) with the relation
∂Π/∂ρ0 = kBTS

−1
F (0), we then arrive at the explicit ex-

pression for the cooperative diffusion constant. Defining
the hydrodynamic radius RH by the relationship Dc =
kBT/(6πηsRH), we find

R−1
H = r−1

0

α(s, tg)β(s, tg)

s[α(s, tg) + β(s, tg) + tg]1/2
(8)

with α(x, y) =
√

1 + xy, β(x, y) = x+
√

1 + xy. This is the
main result of this paper. As a function of the variables
tg and s, it has the same functional form as the cooper-
ative diffusion constant of polyelectrolyte solutions. The
only difference is that for gels the temperature variable tg
contains the effect of crosslinking. Naturally, the N →∞
limit of the above result (8) reproduces the known expres-
sion for the polyelectrolyte solutions [8].

Since the result (8) is a function of a rather large num-
ber of parameters, an extensive analysis of the parameter
space will be discussed elsewhere. Here we list several no-
ticeable features of our result: (1) General features of Dc

for gels and solutions are very close as already found in
references [9,10]. It is worth adding that the theoretical
prediction of reference [8] for solutions was checked quan-
titatively by Moussaid et al. [11]. The measured values are
systematically lower than the theoretical ones by a factor
of about 5. Beside this numerical factor these authors re-
ported the qualitative disagreement between experimental
results and theory. However, in view of the other experi-
mental results [9,10], it seems we need further experiments
to resolve the latter discrepancy. (2) The variation ofDc as
a function of temperature and the influence of added salt
are consistent with the available experimental data [10,12,
13]. (3) We predict that Dc shows a critical slowing-down
as in critical fluids [14] near the macrophase separation
transition, while in the vicinity of the microphase separa-
tion Dc should exhibit a critical speeding-up. (This differ-
ence can be understood as follows. That Dc → 0 as one
approaches the macrophase separation point is the usual
consequence of the broken symmetry due to the long-range
order with q = 0. On the other hand, upon approach-
ing the microphase separation transition, the fluctuations
with q = q∗ 6= 0 dominate and soften. Hence the time scale
of diffusion modes, i.e., 1/Dcq

2, q → 0, becomes well sepa-
rated from that of those critical modes so that one obtains
Dcq

2 � 1). (4) The variation of Dc with the crosslinking
degree is in accord with the recent experimental observa-
tion [15]. (5) Unusual nonmonotonic dependence of Dc on
the monomer concentration in the presence of electrostatic
forces.

As an example, the last point is illustrated in Figure 1;
in particular, a strikingly similar feature to the experi-
mentally observed variation [12,16] of Dc with the degree
of ionization is to be noticed in Figure 1a. The lower con-
centration of free counterions implies the strong repulsive
electrostatic forces. Since the friction coefficient increases
with polymer concentration for swollen chains, the diffu-
sion coefficient decreases when the polymer concentration
increases (Fig. 1b). The increase of Dc upon increasing f ,
which is in agreement with the experimental trends [16],
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Fig. 1. (a) Log-log plots of the normalized inverse hydrody-
namic radius R−1

H ≡ 6πηsDc/kBT versus the ionization degree
f for different polymer volume fractions: φ = 0.01, 0.05, 0.1,
0.15 from the right-hand top to bottom. R∗H is the value of RH
for f = 0.01 and φ = 0.05. (b) Log-log plots of the normalized
R−1
H versus polymer volume fraction φ for different ionization

degrees: f = 0, 0.005, 0.01, 0.02, 0.03 from the lowest to the
uppermost. We have set φ = φ0 (corresponding to the reactor

batch gels) and used a = 8.12 Å, l̂B = 10.8, representative val-
ues of the experiment of reference [17]. The other parameters
used are N = 100, B = 0, χ = 0.5 and φs = 0.

is due to the increase of the osmotic pressure associated
with the free counterions. For larger values of φ, the
relative increase of Dc versus f is reduced upon increasing

φ. This is due to the increase of ionic strength resulting
in a more efficient screening, whereupon one observes a
behavior tending towards that of a neutral gel.

Finally I would like to thank M. Shibayama for informative
conversations.
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